

PII: S0040-4039(96)00733-2

AlCl₃ - Catalyzed Regiospecific Alkylation of Aromatics with Chlorobenzotrifluorides : A High Yield Preparation of 1,1 -Dichlorodiphenylmethanes

Roshan K. Ramchandani, R.D. Wakharkar* and A. Sudalai* Division of Organic Chemistry National Chemical Laboratory, Pune 411 008, INDIA

Abstract: Chlorobenzotrifluorides (2/3), under typical Friedel - Crafts reaction conditions, react efficiently with aromatic compounds (1) to afford 1,1-dichlorodiphenylmethanes, (4) in excellent yield and purity. Copyright © 1996 Elsevier Science Ltd

Friedel - Crafts alkylations allow C-C bond formation in both aromatic and aliphatic systems and are of substantial synthetic and industrial importance. Benzotrichloride has been extensively used by us as a benzoylating agent under Friedel - Crafts reaction conditions to prepare a variety of benzophenones.¹ Subsequently, we found it possible to isolate the intermediate Ph₂CCl₂ (90% yield), presumably formed in such reactions, by simply carrying out the aqueous work-up without any further heating. Promoted by this finding, we became interested in preparing Ar₂CF₂, the fluorine analogue, by subjecting the corresponding ArCF₃ to Friedel - Crafts conditions. Enigmatically, the reaction took altogether a different course in furnishing the halogen - exchanged product, 1,1-dichlorodiphenylmethanes, 4, the results of which are presented in this communication (Scheme 1).

The synthesis of perchloro compounds has received extensive interest in pharmaceutical and agrochemical (as pesticides) industry.² Generally, these compounds are synthesized by the chlorination of the corresponding carbonyl compounds.³

In order to gauge the scope and generality, we have subjected a variety of aromatic substrates to Friedel - Crafts alkylation with ArCF₃ to produce the perchloro compounds, 4, in excellent yields (Table 1). All the perchloro compounds thus synthesized⁴ exhibit a characteristic signal around δ 91 in their ¹³C NMR spectra confirming the presence of *gem*- dichloro carbon moiety. Further, attempts to purify the bromo perchloro compound (ENTRY 4) (m.p. 58°C) through column chromatography (SiO₂ and neutral Al₂O₃) resulted in the formation of the corresponding ketone (m.p. 139°C). It is notable that the alkylation proceeds in a highly regiospecific manner (*para*- selectivity) as no *ortho*- isomer is obtained (¹³C NMR). However, phenolic and anilinic substrates gave mixtures of products difficult to separate. The reaction possibly proceeds in two steps: (1) C-F bond of ArCF₃ being extremely reactive undergoes a facile exchange⁵ with AlCl₃ to produce ArCCl₃, (2) ArCCl₃ on reaction with AlCl₃ generates ArC⁺Cl₂ which in turn alkylates arenes. In summary, this study provides a convenient and efficient method for the preparation of *gem*- dichloro compounds, 4, in excellent yields.

Entry	Subtrate 1	ArCF3 2/3	Product ^a 4	Yield ^b (%)
ı	0	2		96
	1	3		98
2	\bigcirc	3	OO,	97
3	© •	² cı´	CI CI CI	92
4		2 Br ^		9 1
5	ом•	3 MeO~	CI CI	9 7
6	\$	3		9 4
7	(<u>s</u>)	3	SCI CI	9 5
8	00	2		90

Table 1: AICly catalyzed reaction of benzotrifluoride with aromatic compounds.

a: Characterized by IR, ¹H & ¹³C NMR, MS and elemental analysis; b: isolated.

Acknowledgement: RKR thanks the Director, National Chemical Laboratory, Pune, for providing facilities and Dr. T. Ravindranathan for his constant encouragement.

References and Notes:

- Paul, V., Sudalai, A., Daniel, T. and Srinivasan, K.V. Tetrahedron Lett., 1994, 35, 2601; and references cited therein.
- 2. T. Chivers, in *The Chemistry of Carbon-Halogen bond*, ed. by S. Patai, J. Wiley & Sons, Chichester, New York, 1973, p.918.
- 3. Newman, M.S. and Sujeeth, P.K., J. Org. Chem. 1978, 43, 4367 and references cited therein.
- 4. To a cooled (0°C) and stirred solution of anhyd. AlCl₃ (0.033 mol) in 1,2-dichloroethane (15 ml) was added 4-chlorobenzotrifluoride (0.011 mol) upon which a red-colored complex was formed. To this complex was added p-xylene (0.011 mol) and it was stirred for 3h at 0°C. It was then poured into ice, stirred for 5 min. and extracted with dichloromethane. Distillation of the solvent gave the pure perchloro p-xylene product (94%); m.p. 84°C; ¹H NMR (90 MHz, CDCl₃): δ 1.9 (3H, s, CH₃), 2.5 (3H, s, CH₃), 7.0 (2H, br.s, ArH), 7.25 (2H, d, J = 8 Hz, ArH), 7.5 (2H, d, J = 8 Hz, ArH) and 7.9 (1H, br.s., ArH); ¹SC NMR (50.3 MHz, CDCl₃): δ 21.4, 21.7, 91.5, 127.9, 128.7, 128.8, 130.5, 133.0, 133.4, 135.0, 135.5, 139.8 and 143.5; MS: m/z (% rel: intensity): 300 (M*, 5), 263 (100), 227 (40), 212 (12), 192 (98), 178 (43), 165 (14), 152 (8), 114 (18), 106 (15), 94 (28) and 82 (20).
- 5. Henne, A.L. and Newman, M.S. J. Am. Chem. Soc., 1938, 60, 1697.

(Received in UK 12 March 1996; revised 16 April 1996; accepted 19 April 1996)